农业大数据

农业大数据是融合了农业地域性、季节性、多样性、周期性等自身特征后产生的来源广泛、类型多样、结构复杂、具有潜在价值,并难以应用通常方法处理和分析的数据集合。

农业大数据是大数据理念、技术和方法在农业的实践。农业大数据涉及到耕地、播种、施肥、杀虫、收割、存储、育种等各环节,是跨行业、跨专业、跨业务的数据分析与挖掘,以及数据可视化。

农业大数据的特性满足大数据的五个特性,一是数据量大(Volume)、二是处理速度快(Velocity)、三是数据类型多(Variety)、四是价值大(Value)、五是精确性高(Veracity)。包括以下几种:

(1) 从领域来看,以农业领域为核心(涵盖种植业、林业、畜牧业等子行业),逐步拓展到相关上下游产业(饲料生产,化肥生产,农机生产,屠宰业,肉类加工业等),并整合宏观经济背景的数据,包括统计数据、进出口数据、价格数据、生产数据、乃至气象数据等。

(2)从地域来看,以国内区域数据为核心,借鉴国际农业数据作为有效参考;不仅包括全国层面数据,还应涵盖省市数据,甚至地市级数据,为精准区域研究提供基础;

(3)从粒度来看,不仅应包括统计数据,还包括涉农经济主体的基本信息、投资信息、股东信息、专利信息、进出口信息、招聘信息、媒体信息、GIS坐标信息等。

(4)从专业性来看,应分步实施,首先是构建农业领域的专业数据资源,其次应逐步有序规划专业的子领域数据资源,例如针对畜品种的生猪、肉鸡、蛋鸡、肉牛、奶牛、肉羊等专业监测数据。

为了不断推进农业经济的优化,实现可持续的产业发展和区域产业结构优化,进一步推动智慧农业的建设进程,需要全面及时掌握农业的发展动态,这需要依托农业大数据及相关大数据分析处理技术,建设一个农业大数据分析应用平台---农业大数据平台来支撑。

在技术上,该平台应该充分运用先进数据管理技术和数据仓库技术,建设具有高效性,先进性,开放性的商务智能项目。结构上,该平台应具有良好的可配置性,满足资源、业务流程的变化。同时随着业务的发展,业务量的增加,系统也应该具有良好的应用及性能的扩展。

平台拟实现功能:

(1)实现数据库的交互;

(2)根据农业大数据研究的个性化需求,形成一系列相关公开发布数据的采集机制,将数据采集的相关程序设计并编写完善,部署此套机制在平台上周期运转;

(3)数据的浏览,对数据进行查询、展现和基础统计分析等初步应用;

(4)实现农业大数据分析人员的交流平台

平台拟实现目标:

(1)通过平台的建设,汇集各方资源,构建农业领域特色的大数据研究中心;

(2)通过数据整合,采集和加工处理,建设中国第一个专业的农业数据资源中心;

(3)依托农业大数据相关技术,包括数据采集技术、存储技术、处理技术、分析挖掘技术、展现技术等构建农业大数据应用平台;

(4)通过分析应用平台,进行成果发布,形成农业领域专业研究的权威成果发布平台,服务于高校和政府,涉农企业,社会公众等。

您要解决的问题

相关案例